Biological responses of anodized titanium implants under different current voltages.
نویسندگان
چکیده
The oxide layer of a titanium surface is very stable, and seems to result in excellent biocompatibility and successful osseointegration. The purpose of this study was to investigate the effects of high anodic oxidation voltages on the surface characteristics of titanium implants and the biologic response of rabbit tibiae. Bone tissue responses were evaluated by removal torque tests and histomorphometric analysis. Screw-shaped implants with microthreads were made of commercially pure titanium (Grade II). We prepared anodized implants under 300 V (group I), 400 V (group II), 500 V (group III) and 550 V (group IV). The surface characteristics of specimens were inspected according to three categories: surface morphology, surface roughness and oxide layer thickness. The screw-shaped implants were installed in rabbit tibiae. The removal torque values were measured and histomorphometric analysis was done after 1- and 3-month healing periods. Data indicate that as anodic oxidation voltage increased above 300 V, oxide layer thickness increased rapidly and pore size also increased. The roughness values of the implants increased with voltage up to 500 V, but decreased at 550 V. In the removal torque test, group III showed higher values than groups I and II at a statistically significant level (P < 0.05) after a 1-month healing period. In histomorphometric analysis, groups III and IV, after a 3-month healing period, showed greater bone to implant contact ratios for the total implant surface than did group I (P < 0.05).
منابع مشابه
Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation
Currently used orthopedic implants composed of titanium have a limited functional lifetime of only 10-15 years. One of the reasons for this persistent problem is the poor prolonged ability of titanium to remain bonded to juxtaposed bone. It has been proposed to modify titanium through anodization to create a novel nanotubular topography in order to improve cytocompatibility properties necessary...
متن کاملSurface Modification of Anodized Titanium for Calcium Phosphate Coatings
The anodization of titanium involves the formation of a thin, dense and compact, oxide layer. In this process the rutile structure of the original titanium oxide is converted into an anatase structure. It is this anatase structure and how it influences the bonding properties of the sol gel coating of hydroxyapatite (HAp) was the main aim of this research project. "he titanium samples were anodi...
متن کاملIncreased Osteoblast Adhesion on Nano-rough Anodized Titanium and CoCrMo
One approach to improve biological properties of current titanium and CoCrMo implant is to mimic the nanostructures of bone. Surface modification via anodization is popular to create such nanometer surface features on these metallic implants. The objective of the present study was to anodize titanium and CoCrMo and then determine osteoblast adhesion on such materials. Hydrofluoric acid was used...
متن کاملEnhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces
Current orthopedic implants have functional lifetimes of only 10-15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone). To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infec...
متن کاملEffect of Cyclic Precalcification of Nanotubular TiO2 Layer on the Bioactivity of Titanium Implant
The objective of this study is to investigate the effect of cyclic precalcification treatment to impart bioactive properties for titanium implants. Before precalcification, the titanium implants were subjected to blasting using hydroxyapatite (HAp), a resorbable blasting medium (RBM treated), and anodized using an electrolyte containing glycerol, H2O, and NH4F. Precalcification treatment was pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of oral rehabilitation
دوره 33 12 شماره
صفحات -
تاریخ انتشار 2006